Lightning on Stellar: Technical Spec and Roadmap - Stellar

stellar

Lightning on Stellar: Technical Spec and
Roadmap

Christian, March 19, 2018

We want Stellar to become the world’s digital payment rail. We're already the most deployment-
ready of the major platforms (see the below chart), but given the scale of the future we see for Stellar,
we know we need to keep pushing our technology forward.

CoinMarketCap Top 10, Platform Performance
(platforms that have been deployed for >12 mo.-as of Feb 28 2018)

0.000001
@ stellar/ XM
O Neo 0.00001
0.0001
0.001
avg.
O XRP ::n{s:]ctlon
0.01
O sBcH 01
O uc
O DASH o ETH
1
O BT1C
O xR
10
1000 100 10 1

avg.transaction time (s)

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

https://www.stellar.org/
https://dashboard.stellar.org/
https://dashboard.stellar.org/
https://www.stellar.org/blog/author/crudder/

Lightning on Stellar: Technical Spec and Roadmap - Stellar

Scalability—namely, how best to achieve it—has been at the center of some of the most bitter
disagreements in blockchain. We've tried to approach the problem with an open mind. To the extent
an idea improves what our users care about—speed, throughput, privacy—we will explore it, and
since a typical Lightning payment:

— can be confirmed instantly
— has negligible fees
— doesn’t have to become public

the protocol has always interested us. As we said in our 2018 Roadmap it's now clear that Lightning is
the right way forward for Stellar.

How Lightning Works

Lightning is a scaling solution for distributed payment networks, originally proposed for the Bitcoin

blockchain. Lightning is designed to allow users to make off-chain payments through routers and
hubs. Lightning even has the potential to support cross-protocol payments, such as a payment where
the sender sends Bitcoins on the Bitcoin network and the recipient receives lumens on the Stellar
network, without having to trust any parties in between.

Lightning is constructed from building blocks known as payment channels. The concept behind
payment channels is simple but powerful. They allow users to open a channel off-chain and transact
there instead of on the public ledger. Because they’re off-chain, transactions in the channel can be
extremely fast and cheap, but similar to on-chain transactions, there’s no counterparty risk. When the
channel participants are ready to go their separate ways, they close the channel and settle back to
the public ledger. No matter what happened in-channel, the rest of the world only sees that final
transaction. It's like showing someone the last frame of a movie; from that one still, there’s no way to
unpack the rest of the film.

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

https://www.stellar.org/blog/2018-Stellar-Roadmap/
https://lightning.network/
https://lightning.network/

Lightning on Stellar: Technical Spec and Roadmap - Stellar

Developers have begun working on payment channel designs and implementations for several chains
and ledgers beyond just Bitcoin, including Ethereum and Zcash. Each platform’s channels are unique
and depend on the nuances of the platform, but as a rule, any implementation will support a few basic

requirements:

— No transaction submitted to the network, except when parties disengage
— No loss of funds caused by cheating parties

— No vulnerability to third-party interference

— No channel-side speed bottlenecks

Stellar supports a more flexible generalization of payment channels called state channels, meaning
that any operation you can execute on the Stellar network (such as not only payments, but also
creating, deleting, or changing permissions on accounts), you can execute within a payment channel.

Stellar’s state channel implementation relies on the fact that every Stellar transaction specifies a

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

https://raiden.network/
https://blog.z.cash/bolt-private-payment-channels/

Lightning on Stellar: Technical Spec and Roadmap - Stellar

source account and a sequence number. We’'ve figured out how to use those sequence numbers
as a natural versioning mechanism for off-chain payments; it's similar to how your bank gets alerted
for out-of-order cheques. To do the versioning, we're taking advantage of a new operation,
BUMP_SEQUENCE, which we’ll describe in complete detail below.

Our release timeline for Lightning on Stellar is:

Apr 1l BUMP_SEQUENCE pushed to a testnet
Aug 1 State channels beta implementation
Oct 1 State channels on Stellar livenet + Lightning Network beta

Dec 1 Lightning Network on Stellar livenet

Stellar’s creator, Jed McCaleb, first explored Lightning back in 2015; our 2018 implementation still
reflects the cleverness of his original plan, but Jeremy Rubin, with the support of Nicolas Barry and
David Mazieres from SDF, has added the necessary improvements to make Lightning right for us. The
explanation that follows is theirs.

State Channels on Stellar
Update Rules

Exampl In vaScript SDK
Informal Proof

Future Work

State Channels on Stellar

This post describes how state channels can be implemented on Stellar. In future posts, we will show
how these state channels can be chained together using Hashed Timelock Contracts (HTLCs), to
enable multi-hop payments and interoperability with Lightning Network implementations on other
chains (to allow atomic cross-chain trades of Bitcoin for lumens, for example). This design is not
finalized, and we strongly encourage feedback from other researchers and the community as we work

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

http://jedmccaleb.com/blog/bitcoin-lightning-stellar/
https://stellar.org/

Lightning on Stellar: Technical Spec and Roadmap - Stellar

toward a production-ready specification and implementation.

A state channel is an arrangement among \(n\) users, \(u_21\ldots u_n\), who wish to perform off-chain
transactions that settle back as side-effects (net payments, but also account creations/deletions, etc).
The users collaborate to create a series of “snapshot transactions”—sequences of side-effects, \(T_1,
T_2,\ldots, T_k\), such that only the last sequence, \(T_k\), will ever be executed on the public ledger.
To ensure that \(T_j\) cannot be executed once users create \(T_{j+1}\), the protocol makes a
synchrony assumption: it assumes that all participants can observe and respond to the ledger—
including overcoming any downtime or DoS attacks—within some bounded delay \(D\), such as a
week.

To implement state channels on Stellar, we take advantage of the fact that every Stellar transaction
specifies a source account and a sequence number. A transaction’s sequence number must match
the monotonically increasing sequence number of its source account. Our approach will be to assign
successively higher ranges of sequence numbers on an escrow account \(R\) to the transactions in
each sequence \(T_j\). The sequence \(T_j\) cannot initially execute because its sequence numbers
are too high. However, once all users have signed \(T_j\), they go on to sign a second set of “ratchet
transactions,” \(V_})\), that raise account \(R\)'s sequence number to the point at which \(T_j\) can
execute. Raising \(R\)'s sequence number also permanently invalidates the snapshot transactions
\(T_i\) for \(i\) < \(j\)? This is where the synchrony assumption plays in. Transactions in sets \(V_j\) and
\(T_}j\) are given time bounds such that the earliest time at which \(T_j\) can execute is at least \(D\)
delay after the latest time at which \(V_j\) can execute. This delay allows other users to notice that
\(V_Jj\) has been submitted and counter by submitting \(V_k\), thereby ensuring \(T_k\) can be
executed and \(T_j\) cannot.

To support state channels as well as some other applications, Stellar is adding a new operation,
BUMP_SEQUENCE. The new operation enables transactions to arbitrarily increase the sequence
number of a target account. You can see the proposed semantics of BUMP_SEQUENCE here.

We begin the protocol specification with the presumption of a set of users and accounts such that:

\[

\begin{equation*}

\begin{split}

N &=& \text{ number of users}\

sk_{i, a} &=& \text{ secret key known by user i for account a}\
G &=& \text{ aggregation group, for example a Schnorr group}\\

A i &=& \text{ $i*{th}$ account with key $sk_{i, A_i} \times G$}\\

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

https://github.com/stellar/stellar-protocol/issues/53

Lightning on Stellar: Technical Spec and Roadmap - Stellar

g_i &=& \text{ sequence number of $i*{th}$ account at start of protocol}\\
u_i &=& \text{ software node for user i maintaining state}\\
&&T_{next},v_{max},

T {max},

A i,

sk_{i, A_i},

sk _{i, R}

\\

\end{split}

\end{equation*}

\

Our state channel is set up using an escrow account \(R\).

\[

\begin{equation*}

\begin{split}

R_{sk} &= \text{secret key for R (e.g., a aggregated key from $sk_{*, R}$ of all participants)}\\
R_{pk} &= R_{sk} \times G\\

R_q &= \text{sequence number of account R at start of protocol}\\

R_{g’} &= \text{current sequence number of account } R\\

\end{split}

\end{equation*}

\

While this specification describes an escrow account that uses a single aggregated public key from the
private keys of the participants, an alternative (used by the example implementation described below)
would be to use an N-of-N multisignature account, with one key for each of the participants.

The channel state will be updated in rounds, for which \(M_}\) is the start time of round \(}\).

First we create a transaction sequence \(T_1\) that disburses the contents of \(R\).

\[

\begin{equation*}

\begin{split}

T 1 &=& \text{ }t {1, 1}\ldots t {1, n}\\

t {1, i} &=& \text{ transaction in $1{st}$ round of agreement on behalf of participant i with}\\

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

Lightning on Stellar: Technical Spec and Roadmap - Stellar

&& minTime = M_1 + \text{timeout_claim} + \text{timeout_claim_delay} \\
&& maxTime = \infty \\

&& operations = \ldots \small \text{// undo deposit }P\\

&& sequence = R_g+n+i\\

&& source = R

\end{split}

\end{equation*}

\

Note that because of the sequence selected, it is not immediately usable. We must first create a set of
transactions \(V_1\) to bump the sequence number of \(R\) to the appropriate value.

\[

\begin{equation*}

\begin{split}

V_1 &=& \text{ set of transactions for $1*{st}$ round of agreement for sequence bumping }R\\
v_{j, i} &=&\text{ transaction in jth round of on A_i which is}\\
&&minTime = M_1\\\

&&maxTime = M_1\ + \text{timeout_claim}\\

&&operations = \text{sequence_bump } R_g \to R_{g+n}\
&&signers = R_{pk}, A i\\

&&sequence = g_i\\

&&source = A_i\\

\end{split}

\end{equation*}

\

Then users can sign and submit a compound transaction jointly funding \(R\).
\[
P = \text{joint deposit into } R

\

Each off-chain payment then consists of creating a new sequence of transactions \(T_j\) and \(V_}\)
disbursing the funds in \(R\) so as to effect net settlement of the first \(j\) off-chain transactions.

\[

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

Lightning on Stellar: Technical Spec and Roadmap - Stellar

\begin{equation*}

\begin{split}

T_j &=& \text{ sequence of transactions for $j*{th}$ round of agreement settling out of }R\\
t {j,i} &=& \text{ transaction in $j*{th}$ round of agreement on behalf of participant i with}\\
&&minTime = M_j\ + \text{timeout_claim_delay} + \text{timeout_claim}\

&&maxTime = \infty\\

&&operations = ¢_{j,i}\

&&sequence = R_qg+j*(n+1)+i\\

&&source = R\\

c_{j,i} &=& \text{ operations that satisfy u_i's claims over the assets in }R\\

\\

V_j &=& \text{ set of transactions for $j*{th}$ round of agreement for sequence bumping }R\\
v_{j, i} &=& \text{ transaction in $j*{th}$ round of on A_i which is}\

&&minTime = M_j\\

&&maxTime = M_j + \text{timeout_claim}\\

&&operations = \text{sequence_bump } R \to R_{g+j*(n+1)}\

&&signers = R_{pk}, A_i\\

&&sequence = q_i\\

&&source = A i\

\end{split}

\end{equation*}

\

To help illustrate this, here is a visualization of a Stellar lightning channel in the process of updating
from round 4 to round 5.

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

Lightning on Stellar: Technical Spec and Roadmap - Stellar
T,- sequence of transactions for j* round |:|
t;; transaction for i user in j*" round D

ji sequence bump for i*" user in j" round

expired transaction
usable transaction
timed-out transaction (given usable)

possible transaction (given usable)

now
 time .
round | seq.
i1
tl,E
1]0 Vis s T
ths 1
t].,S
tl,l
tZ,Z
2|5 Vas s T
t2,4 2
t2,3
t3,1
max ts,
3 | 10 Vi3g i network .- tsa T
’ delay tos 3
t3,5
L7%}
t4,2
4115 Vas N 'I'4
L7
tas
e e e P
[H hn
:':' II:| ts,
5120 |i it E. T
! 1
i::i V5,1 E:i: :5,4 5
1
::_'—".'—:'—:'—:'—:'—'_'—'_'—'_'-:'-:'—'_'-:'—:'—:'—:'—:'—:'—:'—:'—:'—:'—:'—'.'—:'—:'—:'—:'—:'—'_::'—:'—:'—:'—:'—:'—:'—:'—:'—:'—'_'—'il*I B
v

Update Rules
shapshot update \(j\):

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

Lightning on Stellar: Technical Spec and Roadmap - Stellar

\(T_{next} =1])
for \(i \in 1\ldots k\) {
generate \(t_{j,i}\)
for each \(k\in1...n\) {
\(t_{j, i} \gets signed(t_{j, i}, sk_{k, R}) \)
}
\(T_{next} \gets T_{next} + [t_{j,i}]\)
}
for each \(u_i \in U\){
\(T_{next}u_i} \gets T_{next}\)
}
for each \(i\in 1...n\) {
generate \(v_{j, i}\)
for each \(k\in\{ 1...n\} = \{i\}\) {
\(v_{j, i} \gets signed(v_{j, i}, sk_{k, i}) \)
atomically {
\(T_{max}u_i} \gets T_{next}u_i}\)
\(v_{max}u_i} \gets v_{j, i}\)

\(a_k\) monitor:

\(r \gets R_{q}\)
wait until \(R_{q’} > r\)
\(r \gets bumpTo(operations({v_{max}}) \))
IFAR_A{a} =) {
wait until \(minTime(T_{max})\)
publish \(T_{max}\)
}elseif (R_{g}<r)\){
publish \(v_{max}\)
wait until \(minTime(T_{max})\)
publish \(T_{max}\)
}elseif (R_{gq}>=r+n)\){
/[we are corrupted; no clear next action
}elseif (R {q}<r+n\){

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

Lightning on Stellar: Technical Spec and Roadmap - Stellar

publish \(T_{max}[R_{q’}...r+n]\)

}
timeout:
loop {
wait until \(maxTime(v_{max}) —now <=D)
try {
snapshot update to \(T\) where \(seq(T’) = seq(T_{max}) + 1\)
} catch {
publish \(v_{max}\)
}
}

honest_close:

if \(1 = |\{bumpTo(operations(v_{max}{u_i})[O]) | i \in 1\Idots n\} |\) and corresponding
\(T_{max} =T _{next}\){

snapshot update to \(T'\) where \(seq(T") = seq(T_{max}) + 1\) and \(minTime(T’") =
now \)

publish \(v_{max}\)

publish \(T_{max}\)

Example Using JavaScript SDK

We'll use the Stellar JavaScript SDK to show how one can create a state channel between Alice and
Bob. This example is simplified for educational purposes and does not implement a fully functional
payment channel, nor does it precisely reflect the specification or final implementation.

The channel will have 1000 lumens deposited into it, with an initial balance of 250 for Alice and 750 for
Bob. We will then have them sign transactions that update the balance to 500/500, without any of
those transactions having to hit the chain. Finally, they will close the channel.

Alice and Bob need to select values for TIMEOUT_CLAIM and TIMEOUT_CLAIM_DELAY based on
their payment frequency and network connectivity expectations (including the synchrony assumption
for the network, \(D\)). TIMEOUT_CLAIM_DELAY should be at least \(D\), whereas TIMEOUT_CLAIM

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

https://www.stellar.org/developers/js-stellar-sdk/reference/

Lightning on Stellar: Technical Spec and Roadmap - Stellar

should be at least \(D\) plus the maximum expected time between rounds. To be able to use concrete

time periods in the examples below, we will pick a value of one week for \(D\), set

TIMEOUT _CLAIM_DELAY to 1 week, and set TIMEOUT _CLAIM to 2 weeks. (These times are
unrealistically conservative, but should be easy to track in the below examples.)

We'll start like this:

moment = require(“moment®)
biglnt = require("big-integer-)
{

Account,

Asset,

Keypair,

Network,

Operation,

Server,

TransactionBuilder,

} = require(“stellar-sdk®)

TIMEOUT_CLAIM = moment.duration(2, “week®).seconds()
TIMEOUT_CLAIM_DELAY = moment.duration(l, “week®).seconds()

server = Server("https://horizon-testnet.stellar.org”)
Network.useTestNetwork()

/7 Alice and Bob are preexisting funded accounts controlled by AliceKeypair and BobKeypai

AliceKeypair = Keypair.fromSecret("SCIXVMGTGHIOVMHRA7B7 1CJ4XWAYSQP67VNSLNXS70YZKXDS7|

AliceKey = AliceKeypair.publicKey()
Alice = await server.loadAccount(AliceKeypair.publickey())

/7 Alice generates throwaway keys for her version account and for the ratchet account
AliceVersionKeypair = Keypair.random()

Al iceRatchetKeypair = Keypair.random()

AliceVersionKey = AliceVersionKeypair.publicKey()
AliceRatchetKey AliceRatchetKeypair.publicKey()

// Bob does the same
BobKeypair = Keypair.fromSecret("SAJ21SPPRUA4MPCDFOILZE6E4H3X6140VTMPX4QZBLXTMWMSKOSM

BobKey = BobKeypair.publicKey()
Bob = awailt server.loadAccount(BobKey)

BobVersionKeypair Keypair.random()
BobRatchetKeypair Keypair.random()

BobVersionKey = BobVersionKeypair.publicKey()

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

Lightning on Stellar: Technical Spec and Roadmap - Stellar

BobRatchetKey = BobRatchetKeypair.publicKey()

// the Ratchet account ID iIs Alice"s ratchet key
RatchetAccountld = AliceRatchetKeypair.publickey()

We then create three accounts:

setupAccountsTx = TransactionBuilder(Alice)
-addOperation(
Operation.createAccount({
destination: AliceVersionKey,
startingBalance: "1°,
P

)
-addOperation(

Operation.createAccount({
destination: BobVersionKey,
startingBalance: "1°,

b

))
-addOperation(

// set up the ratchet account
/7 which initially has only Alice"s ratchet key
// the funding transaction will add Bob®"s key
Operation.createAccount({
destination: AliceRatchetKey,
startingBalance: =27,

1))

)
_buildQ)

setupAccountsTx.sign(AliceKeypair)
awalt server.submitTransaction(setupAccountsTx)

AliceVersion = await server.loadAccount(AliceVersionKey)
BobVersion = await server.loadAccount(BobVersionKey)
Ratchet = await server.loadAccount(RatchetAccountlid)

Alice and Bob must now prepare round 0 before funding the channel.

First, they prepare snapshot transactions reflecting their current balances, and exchange their

signatures on them.

RoundOTime = moment().-unix()
RatchetSequenceNumber = biglnt(Ratchet.sequenceNumber())
RatchetOSequenceNumber = RatchetSequenceNumber.plus(3)

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

Lightning on Stellar: Technical Spec and Roadmap - Stellar

SnapshotOAlice = TransactionBuilder(
Account(RatchetAccountld, RatchetOSequenceNumber.toString()),
{
timebounds: {
minTime: RoundOTime + TIMEOUT CLAIM + TIMEOUT CLAIM_DELAY,
maxTime: O,

-addOperation(
Operation.payment({
destination: Alice.accountld(),
asset: Asset.native(),
amount: "250°7,
P

)
_buildQ

SnapshotOBob = TransactionBui lder(
Account(
RatchetAccountlid,
RatchetOSequenceNumber.plus(l).toString()

timebounds: {
minTime: RoundOTime + TIMEOUT_CLAIM + TIMEOUT_CLAIM_DELAY,
maxTime: O,

-addOperation(
// gives control over the ratchet, and iIts remaining 750 lumens, to Bob
Operation.setOptions({
signer: { ed25519PublicKey: BobKey, weight: 2 },
19

)
_buildQ

// exchange signatures

SnapshotOBob.sign (Al iceRatchetKeypair)
SnapshotOAlice.sign(BobRatchetKeypair)

They then exchange their initial Ratchet transactions, which will bump the sequence number of the

ratchet account to the sequence number immediately preceding the snapshot transactions. (Note that
this will not work yet in the existing SDK, because the BUMP_SEQUENCE operation is not yet
supported on the network.)

RatchetOAlice = TransactionBuilder(
Account(AliceVersion.accountld(), AliceVersion.sequenceNumber()),
{ timebounds: { minTime: RoundOTime, maxTime: RoundOTime + TIMEOUT_ CLAIM } }

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

Lightning on Stellar: Technical Spec and Roadmap - Stellar

-addOperation(
Operation.BumpSequence({
sourceAccount: RatchetKey,
target: RatchetOSequenceNumber.minus(l).toString(),
1)

)
_buildQ

RatchetOBob = TransactionBuilder(
Account(BobVersion.accountld(), BobVersion.sequenceNumber()),
{ timebounds: { minTime: RoundOTime, maxTime: RoundOTime + TIMEOUT_CLAIM } }
)
-addOperation(
Operation.BumpSequence({
sourceAccount: RatchetKey,
target: RatchetOSequenceNumber.minus(l).toString(),
P
)
_build(Q)

Now that the snapshot transactions and ratchet transactions are in place, either Alice or Bob will have

the ability to close the channel and receive their portion of the lumens. This means it is now safe for
Alice and Bob to fund the channel.

fundingTx = TransactionBui lder(Ratchet)
-addOperation(

Operation.payment({

source: Alice.accountld(),

destination: Ratchet.accountld(),

asset: Asset.native(),

amount: "248%, // Alice has already paird in 2 lumens
P

)
-addOperation(

Operation.payment({
source: Bob.accountld(),
destination: Ratchet.accountld(),
asset: Asset.native(),
amount: "750°7,
b
)
-addOperation(
Operation.setOptions({
signer: { ed25519PublicKey: BobRatchetKey, weight: 1 },
lowThreshold: 2,
medThreshold: 2,
highThreshold: 2,
P

)
_buildQ)

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

Lightning on Stellar: Technical Spec and Roadmap - Stellar

fundingTx.sign(AliceKeypair)
fundingTx.sign(BobKeypair)

fundingTx.sign(AliceRatchetKeypair)

await server.submitTransaction(fundingTx)

Now the channel is fully set up. If, at this point, either Alice or Bob were to act dishonestly (e.g. by
going offline or refusing to respond) either party can initiate their ratchet transaction, then the
snapshot transactions, to get back to their initial state.

Critically, the redeeming party must act within the specified time range. In this case, if there are no
further rounds in the channel and Bob does not cooperate in creating further rounds, Alice should
attempt to close the channel within one week (to give herself at least \(D\) time to get her transaction
included). She must then wait two weeks (a total of three weeks from the start time of the channel) for
the snapshot transactions to become valid.

Now, Bob wants to pay Alice 250 lumens over the channel. In other words, they want to update the
channel state, so the balances change from 250/750 (with Alice owning 250) to 500/500.

Alice and Bob create new snapshot transactions, reflecting the updated state, and exchange their
signatures on them.

RatchetlSequenceNumber = RatchetOSequenceNumber.plus(3)
RatchetlAccount = Account(

Ratchet.accountld(),

RatchetlSequenceNumber . toString()

)

Round1Time = moment() -unix()

SnapshotlAlice = TransactionBui lder(
Account(RatchetAccountld, RatchetlSequenceNumber.toString()),
{
timebounds: {
minTime: Round1Time + TIMEOUT_ CLAIM + TIMEOUT CLAIM_DELAY,
maxTime:

}
N

They now can create and exchange signatures on new ratchet transactions:

RatchetlBob = TransactionBuilder(

Account(BobVersion.accountld(), BobVersion.sequenceNumber()),
{ timebounds: { minTime: RoundlTime, maxTime: RoundlTime + TIMEOUT_ CLAIM } }

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

Lightning on Stellar: Technical Spec and Roadmap - Stellar

-addOperation(
Operation.BumpSequence({
sourceAccount: RatchetKey,
target: RatchetlSequenceNumber.minus(l).toString(),
1)

)
_buildQ

RatchetlAlice = TransactionBui lder(
Account(AliceVersion.accountld(), AliceVersion.sequenceNumber()),
{ timebounds: { minTime: RoundlTime, maxTime: RoundlTime + TIMEOUT_CLAIM } }

)
-addOperation(

(Operation as any).BumpSequence({

sourceAccount: RatchetKey,

target: RatchetlSequenceNumber.minus(l).toString(),
19

)
_buildQ

RatchetlBob.sign(AliceRatchetKeypair)
RatchetlAlice.sign(BobRatchetKeypair)

This payment is now done. Note that none of these transactions are broadcast to the network.

However, there’s now a potential problem—Alice and Bob still have valid ratchet and snapshot
transactions from round 0, when their balances were different. What happens if Bob tries to submit
those transactions, to close the channel at an outdated state?

Each of Alice and Bob should therefore monitor the network to detect any transactions from the
other’s version account. If they detect one, they should immediately submit the ratchet transaction
from the latest round.

streamHandler = server

-transactions()

-TforAccount(BobVersion.accountlid())

-cursor("now")

.stream({

onmessage: async (transaction) {
(transaction.hash !== RatchetlBob.hash().toString(“hex")) {
await server.submitTransaction(RatchetlAlice)

To ensure that there is enough time for Alice or Bob to challenge any invalid submission, they should

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

Lightning on Stellar: Technical Spec and Roadmap - Stellar

make sure that rounds happen frequently enough that the remaining time that latest ratchet
transaction is valid is at least as long as D, so they will have time to respond to any submissions of

stale ratchet transactions.

The parties can add as many payments as they like to the channel by creating and signing new
snapshot transactions reflecting the new state of the channel, as well as ratchet transactions that set

up those snapshot transactions. For each new round, the starting sequence number of the snapshot

transactions is incremented by 3. None of these transactions need to be submitted to the network.

Finally, to close the channel, Alice and Bob sign and submit closing transactions to the network, using
the balances from the latest snapshot transactions. These transactions are similar to the previous
rounds—involving both ratchet transactions and snapshot transactions—except that that snapshot
transactions do not need time bounds, and only one shared Ratchet transaction is required.

CooperativeCloseSequenceNumber = RatchetlSequenceNumber.plus(3)

CooperativeCloseSnapshotAlice = TransactionBuilder(
Account(RatchetAccountld, CooperativeCloseSequenceNumber.toString())

-addOperation(
Operation. payment({
destination: Alice.accountld(),
asset: Asset. O,
amount: "500°,

b

)
_buildQ)

CooperativeCloseSnapshotBob = TransactionBuilder(
Account(

RatchetAccountlid,

CooperativeCloseSequenceNumber.plus (1) .toString()

)

))
-addOperation(
Operation.setOptions({
signer: { ed25519PublicKey: BobKey, weight: 1.

1))

)
_buildQ

CooperativeCloseSnapshotAlice.sign(AliceRatchetKeypair)
CooperativeCloseSnapshotBob.sign(AliceRatchetKeypair)

CooperativeCloseSnapshotAlice.sign(BobRatchetKeypair)
CooperativeCloseSnapshotBob. sign(BobRatchetKeypair)

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

Lightning on Stellar: Technical Spec and Roadmap - Stellar

CooperativeCloseRatchet = TransactionBui lder(
Account(Ratchet.accountld(), RatchetlnitialSequenceNumber.toString()),
{ timebounds: { minTime: ClosingTime, maxTime: ClosingTime + TIMEOUT_CLAIM } }

)
-addOperation(

Operation.BumpSequence({
target: CooperativeCloseSequenceNumber.minus(l).toString(),
D

)
_buildQ)

CooperativeCloseRatchet.sign(AliceRatchetKeypair)
CooperativeCloseRatchet.sign(BobRatchetKeypair)

await server.submitTransaction(CooperativeCloseRatchet)
await server.submitTransaction(CooperativeCloseSnapshotAlice)
awalt server._submitTransaction(CooperativeCloseSnapshotBob)

This is one way to do a safe honest close; there are others that reveal even less information to the

network.

Informal Proof

We can informally prove that at this point we have made it impossible to close at the initial channel
state after the next round has completed. Our argument generalizes to any number of prior states,
and also holds when Alice and Bob’s roles are reversed.

Assume Bob is malicious and Alice is honest.

1. Alice is monitoring the network for activity on the BobVersion account.

2. After the second round, Bob submits RatchetOBob.

3. Alice now has at least \(D\) to submit a later ratchet transaction to counter Bob’s.
(This relies on Alice enforcing this invariant—i.e., if her latest ratchet transaction, in
this case RatchetlAlice, is less than \(D\) away, she must immediately close the
channel or submit the ratchet transaction, to ensure that Bob isn’t able to submit a
stale ratchet transaction that leaves her too little time to respond).

4. Alice can submit Ratchetl1Alice, to set up SnapshotlAlice.

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

Lightning on Stellar: Technical Spec and Roadmap - Stellar
5. Because all of Bob’s ratchet transcations use the same sequence number, there are
no other operations Bob can use to affect the Ratchet account
6. Once the minTime on SnapshotlAlice is satisfied, Alice can use it to redeem her

funds.

Assume Bob disappears after SnapshotlAlice, and Alice is honest.

Alice requests an honest_close, but Bob is unreachable.
Alice submits Ratchetl1Alice before it expires.

Alice waits until the minTime of SnapshotlAlice has been satisfied.

B =

Alice submits Snapshotl1Alice.

Assume Bob disappears part-way through a payment or honest close—after
signing SnapshotlAlice and SnapshotlBob, but before signing RatchetlAlice—
and Alice is honest.

1. Neither party has the applicable ratchet transaction for the second round, so that
payment is never finalized.

2. Alice can use RatchetOAlice and AliceOSnapshot to close the channel.

Assume Bob disappears part-way through a payment or honest close—after
receiving Alice’s signature on BobRatchetl, but before giving Alice his signature
on RatchetlAlice—and Alice is honest.

1. Alice proceeds with AliceRatchetO.

2. If Bob comes back online before BobRatchetl expires, he can contest with
BobRatchetl. After the delay period, either can submit Snapshot1Alice and
SnapshotlBob.

3. Alternatively, if Bob doesn’t come back online, Alice can wait until BobRatchetl has
expired and the minTime of AliceOSnapshot has been satisfied, and submit

AliceOSnapshot.

Assume Alice disappears part-way through a payment or honest close—after
creating SnapshotlAlice, but before creating Ratchet1Alice—while Bob is honest.

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

Lightning on Stellar: Technical Spec and Roadmap - Stellar

1. Neither party has RatchetlAlice or RatchetlBob.
2. Bob forces a close using RatchetOBob, SnapshotOAlice, and BobOSnapshot.

Future Work

This is a simple design for payment channels on Stellar, but there is still much work to be done.

We’re currently working on support for multi-hop payments, increased privacy and scalability, and
interoperability with Lightning Network channels on other blockchains such as Bitcoin. If you're
interested in helping us build out our protocol, join us on GitHub or StackExchange.

DEVELOPER || STELLAR NEWS || TECHNICAL POSTS

mm

Get the latest Stellar developer news.

I

https://www.stellar.org/blog/lightning-on-stellar-roadmap/[4/2/2018 3:03:17 PM]

https://github.com/stellar
https://stellar.stackexchange.com/
https://www.stellar.org/blog/category/developer/
https://www.stellar.org/blog/category/developer/
https://www.stellar.org/blog/category/stellar-news/
https://www.stellar.org/blog/category/stellar-news/
https://www.stellar.org/blog/category/technical/
https://www.stellar.org/blog/category/technical/
https://www.facebook.com/sharer/sharer.php?u=https://www.stellar.org/blog/lightning-on-stellar-roadmap/
https://www.facebook.com/sharer/sharer.php?u=https://www.stellar.org/blog/lightning-on-stellar-roadmap/
https://twitter.com/intent/tweet?text=Lightning%20on%20Stellar%3A%20Technical%20Spec%20and%20Roadmap%20via%20%40StellarOrg%20https%3A%2F%2Fwww.stellar.org%2Fblog%2Flightning-on-stellar-roadmap%2F

	stellar.org
	Lightning on Stellar: Technical Spec and Roadmap - Stellar

	ctb24tc3RlbGxhci1yb2FkbWFwLwA=:
	button3:

	ctb24tc3RlbGxhci1yb2FkbWFwLwA=:
	mc-embedded-subscribe-form:
	EMAIL:
	subscribe:

